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The cyclopropane unit is a common structural motif in biologi-
cally active natural and unnatural compounds. Its unique reactivity
and structural properties have led chemists to develop a new
methodology for cyclopropanation.1 Among the methods available,
cyclopropanation using ylides proceeds chemoselectively with
electron deficient olefins.2 Therefore, the method is complementary
to other variants, such as the Simmons-Smith type reaction and
the carbenoid-mediated reaction. Catalytic highly enantioselective
Simmons-Smith-type and carbenoid-mediated cyclopropanations
have been established;1,3 however, catalytic asymmetric cyclopro-
panation of electron deficient olefins with ylides is rare.4,5

Aggarwal4a and Gaunt4b reported pioneering studies on enantio-
selective cyclopropanations via the catalytic generation of chiral
sulfonium and ammonium ylides. On the other hand, MacMillan
realized high enantiocontrol by activating the electrophiles,R,â-
unsaturated aldehydes, with an organocatalyst.5a,6 High enantio-
selectivity was achieved using stabilized sulfonium ylides with a
â-ketone unit. With a Lewis acidic metal complex, a more reactive
sulfonium ylide was applicable; however, stoichiometric amounts
of a chiral ligand and a Lewis acid were required to obtain high
enantioselectivity (>90% ee).7 Thus, the development of acatalytic
cyclopropanation with a reactive ylide is desirable. Herein we report
a catalytic asymmetric Corey-Chaykovsky cyclopropanation of
enones2 with dimethyloxosulfonium methylide promoted by a La-
Li3-(biphenyldiolate)3 + NaI system (Figure 1,1a-c). A NaI
additive as well as biphenyldiol1b both had a key role in achieving
high enantioselectivity (up to 99% ee).

Initial optimization studies with dimethyloxosulfonium methylide
2 and enone3a using heterobimetallic La-Li3-(ligand)3 com-
plexes8 are summarized in Table 1. On the basis of our recent
finding that biphenyldiols are sometimes superior to BINOL in rare
earth metal catalysts,9 we examined both BINOL and biphenyldiols
as ligands. When using ylide2 prepared from trimethyloxosul-
fonium iodide and NaH (entries 1-2), 4a was obtained in 38% ee
with ligand 1a (entry 2), while the use of BINOL resulted in 1%
ee (entry 1). With ylide2 prepared from trimethyloxosulfonium
chloride and NaH, however, the enantioselectivity decreased to 6%
ee (entry 4, ligand1a). We assumed that the difference in entries
2 and 4 was due to NaI included in the ylide2 solution in entry 2.
The beneficial effects of NaI on enantioselectivity were confirmed
by the reaction of ylide2 prepared from trimethyloxosulfonium
chloride and NaH with 30 mol % of NaI additive, giving4a in
37% ee (entry 5). Further optimizations of the NaI amount (entry
6), the solvent (entry 7), biphenyldiols (entries 7-11, 1a-c), and
additive (entries 10-11, MS 4 Å) revealed that 10 mol % of the
La-Li3-(1b)3 complex with NaI (10 mol %) and MS 4 Å additives
was the best combination, giving4a in 86% yield and 89% ee (entry
11). Slow addition of enone3aover 1.5 h was effective to improve
enantioselectivity, giving4a in 97% yield and 97% ee (entry 12).

The optimized reaction conditions were applicable to various
enones, giving exclusively trans adducts in all entries (Table 2).

Chalcone derivatives with either electron-withdrawing or electron-
donating substituents (entries 2-5) as well as heteroaryl-substituted
enones (entries 6-8) were applicable with 5 mol % catalyst loading,
giving products in high enantioselectivity (93-99% ee). Reaction
of 3i with two carbon-carbon double bonds proceeded chemo-
selectively at the electron deficient carbon-carbon double bond
(entry 9). With dienone3j, 1,4-addition proceeded selectively, and
thetrans-R,â-cyclopropyl adduct4j was obtained in 89% yield and
91% ee (entry 10). Alkyl ketones3k and3l were also applicable
(entries 11-12). Catalyst loading was successfully reduced to 2.5
and 1 mol %, while maintaining good enantioselectivity (entries
13-15). Equation 1 illustrates preliminary investigation to further
extend the substrate scope to a carboxylic acid derivative. Cyclo-
propanation ofR,â-unsaturatedN-acylpyrrole5 proceeded smoothly
using 5 mol % of catalyst and 1.0 equiv of ylide2, giving product

Figure 1. Structures of (S)-La-M3-(ligand)3 complex, (S)-BINOL, and
(S)-biphenyldiols1a-H2, 1b-H2, and1c-H2.

Table 1. Optimization of Reaction Conditions

entry ligand
additive
(mol %) solvent

slow
addition

time
(h)

yield
(%)

ee
(%)

1a BINOL none THF - 72 71 1
2a 1a none THF - 72 72 38
3b BINOL none THF - 72 71 1
4b 1a none THF - 20 51 6
5b 1a NaI (30) THF - 30 37 37
6b 1a NaI (10) THF - 24 36 53
7b 1a NaI (10) THF/tolc - 24 45 55
8b 1b NaI (10) THF/tolc - 18 43 51
9b 1c NaI (10) THF/tolc - 24 42 13
10b 1a NaI (10)+ MS 4 Å THF/tolc - 18 69 82
11b 1b NaI (10)+ MS 4 Å THF/tolc - 18 86 89
12b 1b NaI (10)+ MS 4 Å THF/tolc +d 20 97 97

a Ylide 2 was prepared from trimethyloxosulfonium iodide and NaH.
b Ylide 2 was prepared from trimethyloxosulfonium chloride and NaH.
c THF/toluene) 4/5. d 3a in THF/toluene was added slowly over 1.5 h.
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6 in 68% yield and 98% ee.N-Acylpyrrole moiety in6 was readily
converted into ethyl ester by treatment with NaOEt in 94% yield.10

In the present system, the best yield and enantioselectivity was
obtained with the NaI additive. ESI-MS analysis supported the idea
that a partial alkali metal exchange occurred in the presence of
NaI to afford a La-Li2-Na-(1b)3 complex in situ.11,12 A control
experiment with 10 mol % of La-Na3-(1b)3 complex alone under
the optimized conditions (slow addition, MS 4 Å) gave4a from
3a in only 5% ee and 44% yield, while 10 mol % of La-Na3-
(1b)3 + LiI complex gave4a in 88% ee and 94% yield. The results
also support the importance of Li/Na mixture system.11,13 On the
basis of previous structural analysis of heterobimetallic rare earth-
alkali metal-BINOL complexes and the effects of alkali metals
on enantioselectivity in other reactions,14,15 we speculate that the
partial alkali metal exchange in the present system would slightly
modify the asymmetric environment, thereby resulting in better yield
and enantioselectivity in the present reaction. Further mechanistic
studies to elucidate the precise role of NaI on enantioselectivity
are ongoing.

In summary, we achieved a catalytic asymmetric cyclopropana-
tion of enones and anN-acylpyrrole with dimethyloxosulfonium
methylide2 using a La-Li3-(biphenyldiolate1b)3 + NaI complex.
The present system is complementary to previously reported
organocatalytic methods in terms of ylide utilized,4,5 and products
were obtained in good yield (97-73%) and high ee (99-84%) with
1-10 mol % catalyst loading. The use of biphenyldiol1b-H2 and
the NaI additive was important to achieve high enantioselectivity.
Further mechanistic studies16 as well as applications of the mixed-
alkali metal system in other asymmetric reactions are in progress.
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Table 2. Catalytic Asymmetric Cyclopropanation of Various
Enonesa

enone

entry R1 R2

cat/NaI
(x mol %)

time
(h)

yieldb

(%)
ee
(%)

1 Ph Ph 3a 5 18 96 94
2 4-Cl-C6H4 Ph 3b 5 18 93 93
3 4-MeO-C6H4 Ph 3c 5 18 95 97
4 Ph 4-Cl-C6H4 3d 5 18 92 96
5 Ph 4-MeO-C6H4 3e 5 18 93 95
6 Ph 2-furyl 3f 5 18 96 99
7 Ph 2-thienyl 3g 5 18 94 99
8 Ph 4-pyridyl 3h 5 18 91 95
9 4-allyl-O-C6H4 Ph 3i 5 18 92 96

10 Ph -CHdCHPh 3j 5 18 89 91
11c CH3 Ph 3k 5 18 74 84
12 iPr Ph 3l 10 18 73 94
13d Ph Ph 3a 2.5 18 90 93
14d Ph 2-furyl 3f 1 18 82 97
15d Ph 2-thienyl 3g 1 18 94 94

a Reaction was performed in THF/toluene) 4/5 (0.1 M on enones3) at
-55 °C with MS 4 Å. Enone3 in THF/toluene was added slowly over 2
h, and 1.2 equiv of ylide2 prepared from trimethyloxosulfonium chloride
and NaH were used unless otherwise noted.b Isolated yield.c 4k was
volatile; 1.4 equiv of ylide2 were used in entry 11.d Enone3 was added
slowly over 3 h (entry 13) and 4 h (entries 14-15).
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